
Advanced Algorithms: Top 10 Ideas
CS 181 Advanced Algorithms — Fall 2025

1. The Max-Flow Min-Cut Theorem

Coming in at number 1 is the beautiful theorem relating the maximum ow and minimum cut
in any graph. We saw several algorithms and many applications for computing both of these
quantities, including the Ford-Fulkerson algorithm and the Push-relabel paradigm. We saw
applications to computer vision, social network analysis, matrix-rounding and fault-tolerant
network design.

2. Hall’s Theorem

We have seen the surprising prevalence of matchings in decision-making tasks. When does a
bipartite graph have a perfect matching? The simple condition that all neighborhoods must
expand (or at least not shrink) is both necessary and sucient, and has many algorithmic
consequences including the Hungarian Algorithm for minimum-cost perfect matching in a
bipartite graph.

3. Linear Programming is in P

This fact alone may be the most useful takeaway from this class if you are a practitioner of
applied algorithms. Many problems are directly modeled as Linear Programs. Not only this,
but LP provides a unied language for all optimization problems and is commonly used as a
subroutine in the design of algorithms in general.

4. Linear Programming Duality

All Linear Programs come in pairs, where the feasible solutions of each provide bounds on
the optimal solution of the other (by construction). The surprising thing is that their optimal
values always coincide.

5. Integer Programming is NP-Hard

Almost every combinatorial optimization problem can be modeled as an Integer Linear Pro-
gram. While solving them is NP-hard in general, plugging your problem into a highly opti-
mized ILP solver will give you a solution faster than most brute-force algorithms. Not only
this, but relaxing the integrality constraints denes a whole new class of fractional solutions
to combinatorial problems we know and love.

6. A Perfect Formulation for Bipartite Matching

This is the prototypical example of how linear programs can be utilized to tackle complicated
combinatorial problems. The set of fractional solutions to the Perfect Matching LP denes a
geometric polyhedron in m-dimensional space, whose corners will always have integer coor-
dinates. Thus, we get an optimal integral solution by simply solving the LP.

1



7. Beating NP-Hardness

The main takeaway here is that NP-hardness is not the end of the road! We saw a variety of
techniques to get around this fundamental limit on tractability, including restricting to cases
with more structure, parameterization and approximation.

8. Approximation Algorithms: Problems, Solutions, and Techniques

The Traveling Salesperson Problem, k-clustering, the Set Cover problem, max-cut and load
balancing. We saw how fundamental problems can be tackled through the lens of approx-
imation algorithms. More importantly, we worked with a variety of techniques which are
generally useful in the design of algorithms including greedy algorithms, local search, and
LP-based rounding.

9. Online Algorithms and Competitive Analysis.

While computing a solution fast given full information is very useful, in most decision-making
problems we encounter in real life, the bottleneck may not be computational time but lack
of information. The brilliant thing is that we can design algorithms which perform well on
the y despite not knowing what the future holds. We saw paradigms such as Better-Late-
Than-Never, Least-Recently-Used, and Water-lling. These policies are competitive against
a strong benchmark: the clairvoyant optimum.

10. Randomness is Provably Useful

In the world with an uncertain and adversarial future, it turns out that hedging can be a
good strategy for making decisions! For some problems, there is a provable separation between
the performance of a randomized algorithm and any deterministic algorithm. Whether this
phenomenon holds in the realm of computational time-complexity remains a major open
question in the eld.

2


